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Summary

This paper describes ω−x finite-difference prestack depth
migration of converted-wave data in TIV media. The
migration is accomplished by numerical wavefield extrap-
olation where the upgoing and downgoing wavefields are
extrapolated in depth with space-variant filter operators.
The filter operators are precomputed in a separate filter
operator design program and accessed by the migration
algorithm. The ratio between the temporal frequency
and the local velocity, together with the anisotropic
media type (defined by one specific set of Thomsen
parameters) and wave mode (qP or qSV), are used to
determine the correct filter operator at each grid point
during the downward and upward continuation. Imaging
is performed by crosscorrelating the source wavefield with
the data wavefield divided by the source illumination at
each depth level.

Introduction

Wave equation based prestack depth migration tech-
niques might provide better solutions to the imaging
of converted wave data than traditional Kirchhoff tech-
niques. In areas with complex structures and strong
lateral velocity variations several examples using com-
pressional waves have shown that depth migration based
on wave equation algorithms give significantly better
results than Kirchhoff depth migration methods. We
expect this to be true also for converted waves. Several
authors have investigated methods for wave equation
based prestack depth migration using compressional
waves. Holberg (1988) presented a method for 2D
numerical wave-field extrapolation in the space-frequency
domain using space-variant symmetric convolutional
operators. Sollid and Arntsen (1993) extended the
work of Holberg to describe wave extrapolation in 3D.
Another 3D solution was presented by Mittet (2001).
In all of these papers the wave extrapolation algorithms
were derived and tested with respect to extrapolation of
compressional waves in isotropic media. These techniques
can however, easily be modified to handle extrapolation
of converted waves in TIV media.

The earth is anisotropic in nature and converted waves
are more affected by this than compressional waves. A
migration technique for converted waves must be designed
to handle anisotropy. Thomsen (1986) considered wave
propagation in elastic anisotropic media. Zhang et al.
(2001) combined the work of Holberg and Thomsen and
derived formulas for seismic wavefield depth extrapolation
in anisotropic media using iterative application of spatial

convolution.

In this paper, a method for anisotropic wave equation
prestack depth migration of converted wave data is pre-
sented. The method is valid for TIV media with arbitrary
strength of the anisotropy. The method is evaluated based
on a study of migration impulse responses.

Prestack depth migration algorithm

Most prestack depth migration algorithms can be ex-
pressed as a wave field extrapolation step followed by an
imaging condition.The wave field extrapolation step can
be derived from the Kirchhoff integral

p(x, ω) =

∫
S

dS · ∇g(x,xs, ω) p(xs, ω), (1)

where x and ω denote spatial position and (angular) fre-
quency, respectively, while p(x, ω) is the extrapolated
wave field at depth. The integral extends over a surface
S and p(xs, ω) is either the data or a source wave field
at location xs, while g(x,xs, ω) is the associated Greens
function or it’s complex conjugate.

The Greens function used in wave equation finite-
difference prestack depth migration is

g(x,xs, ω) = exp[−ikr(x,xs)]/r(x,xs), (2)

where r(x,xs) is the distance from point x to point xs
and k is the wavenumber. The Greens function given
in equation (2) is strictly speaking only valid for constant
velocity. However, by implementing the Kirchhoff integral
in equation (1) iteratively in depth, assuming that the
velocity model is locally smooth and applying a laterally
varying extrapolator, inhomogeneous velocity fields can
be handled. The Greens function may be approximately
represented by a finite length discrete filter. Downward
wave field extrapolation can then be expressed as a space-
variant convolution in the ω − x domain by

p(ω,x, z + ∆z) =

L∑
l=0

wl[p(ω,x+ l∆x, z) + p(ω,x− l∆x, z)], (3)

where wl are the numerically optimized discrete filter co-
efficients of the appropriate filter. The filter is then a
approximation of the exact extrapolation operator. Here
is ∆z the extraploation step length in the vertical direc-
tion while ∆x is the horizontal distance between data
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points. In TIV media the filter coefficients becomes func-
tions of ω/VP0, the Thomsen parameters ε, δ and the
ratio VP0/VS0. The filter coefficients will also depend on
wave mode (qP or qSV). VP0 and VS0 are the vertical qP-
and qSV-wave velocities, respectively.

The wave field extrapolation is done separately for the
data and the source wave fields and an image can be ob-
tained by cross-correlation of the two extrapolated wave
fields. The cross correlation imaging technique used is
derived from inversion theory (Amundsen et al., 1993),
and is an approximation to the gradient of the data with
respect to the velocity field.

The exact extrapolation operator

The exact representation of the extrapolation operator
may be expressed in the frequency, wavenumber domain
as

G(k, ω) = exp[−ikz∆z], (4)

where kz is the vertical wavenumber.

For TIV media the phase velocities for qP- and qSV-waves
can be expressed exactly as (Thomsen, 1986)

V 2(θ)

V 2
P0

= 1 + ε sin2 θ − f

2

± f

2

√
(1 +

2ε sin2 θ

f
)2 − 2(ε− δ) sin2 2θ

f
, (5)

where θ is the phase angle and f = 1 − V 2
S0/V

2
P0. The

Thomsen parameters ε and δ describe the strength of the
anisotropy.

By introducing plane waves equation (5) yields a disper-
sion equation for TIV media which becomes

kz = ±

√
−a±

√
a2 − 4b

2
, (6)

where ± in front of the square-root is related to up- or
down-going waves and the ± inside the square-root is re-
lated to qP- or qSV-waves, respectively. The coefficients
a and b are given by

a =
(−2(1 + ε− f − fδ)k2

x + ( ω
VP0

)2(2− f))

(f − 1)
(7)

b =
((2 + 2ε− f)( ω

VP0
)2k2

x − ( ω
VP0

)4

(f − 1)

− (1− f)(1 + 2ε)k4
x

(f − 1)
. (8)

This dispersion equation will provide the exact forward
phase-shift extrapolation operator for qP- and qSV-waves
propagating in TIV media.

The approximated extrapolation operator

The approximation of the extrapolation operator can

be formulated as the numerical optimization problem of
finding the filter coefficients wl of a finite-length filter
with a Fourier transform that approximates the desired
Fourier transform of the exact phase-shift extrapolator
defined in equation (4), in a least-squares sense. The
filter operators are pre-computed and made accessible
in tables such that the ratio between the temporal fre-
quency and the local velocity, the Thomsen parameters,
and the wave mode (qP or qSV) are used to determine
the correct operator at each spatial grid point during
the downward continuation. To ensure stability of the
migration scheme, the optimization of the operators is
constrained such that the evanescent energy and waves
propagating at higher angles than the maximum design
angle are damped in the iterative downward continuation
process.

Numerical results

The performance of the suggested migration scheme is
evaluated through a study of migration impulse responses.
The P and P-S impulse responses for a two layered TIV
medium with VP0 = 2000m/s, VS0 = 1000m/s, ε = 0.05
and δ = 0.05 in the first layer and VP0 = 2500m/s,
VS0 = 1250m/s, ε = 0.1 and δ = 0.05 in the second layer
are shown in figures 1 and 2. The P-P and P-S impulse
responses for the isotropic case are for comparison shown
in figures 3 and 4.

Conclusion

A prestack migration scheme for converted wave data
using space-variant filter (convolutional based) operators
has been developed for TIV media. Impulse responses
demonstrate good dip response and correct kinematic
behavior.
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Fig. 1: P-P Impulse response in TIV media with two anisotropic layers.

Fig. 2: P-S Impulse response in TIV media with two anisotropic layers.
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Fig. 3: P-P Impulse response in TIV media with two isotropic layers.

Fig. 4: P-S Impulse response in TIV media with two isotropic layers.


